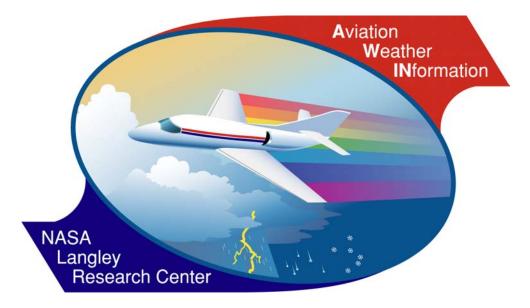


Aviation Weather Information

TAMDAR Sensor Development


Weather Accident Prevention Project Review

MIT Lincoln Labs

November 20, 2002

Taumi Daniels Sensors Research Branch NASA Langley Research Center Hampton, VA 23681-2199 (757) 864-4659

E-mail: t.s.daniels@larc.nasa.gov

Outline

- ➤ Measurement Objectives
- ➤ Sensor Design
- **≻**Current Status
- > Planned Activities
- **>**Summary

Measured Parameters

Parameter	Range	Accuracy	Resolution	Latency
Pressure [†]	10 -101 Kp	5 millibars	±0.05 millibars	
Temperature	-55 to +55°C	±1°C	±0.1°C	
Humidity	0 to 100%RH	±5% (Below Mach .4) ±10% (Mach .46)	±1%	6 seconds
Magnetic Heading [‡]	0-360°	± 5 °		
Ice Detection		Less than 0.030 inch		

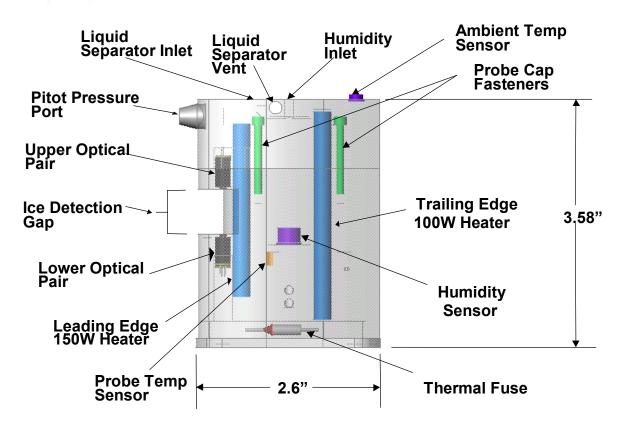
[†]Accuracy specified for angles of attack less than 10°.

[‡]For pitch and roll less than 30° Aircraft Altitudes 0 to 50,000 feet

Derived Parameters

Parameter	Range	Accuracy	Resolution
Pressure Altitude	0 – 10,000 ft.	±150 feet†	±10 feet
Pressure Altitude	10,000 – 25,000 ft.	±200 feet†	±10 feet
Pressure Altitude	25,000 - 50,000 ft.	±250 feet†	±10 feet
Indicated Airspeed	70-270 knots	±3 knots†	
True Airspeed	70-450 knots	±4 knots†	
Turbulence (eddy dissipation rate∈ 1/3)‡	0-20 cm ^{2/3} sec ⁻¹	N/A	
Winds Aloft*		± 4 knots ±5°	
Ice Accretion Rate	0 to 0.25 inches/minute	N/A	

[†]Accuracy specified for angles of attack less than 10°.


[‡]Calculation of eddy dissipation in accordance with McCready Atmospheric Turbulence Scale.

^{*}Winds aloft calculation will require use of GPS and magnetic heading.

Aircraft Altitudes 0 to 50,000 feet.

TAMDAR Sensor Version B

Glenn Research Center Twin Otter

Aviation Weather Information

Right wing installation near cloud physics instrumentation

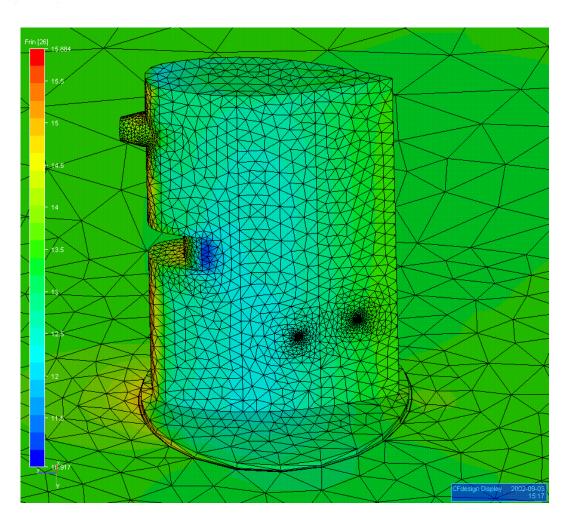
UND Cessna Citation-II

Aviation Weather Information

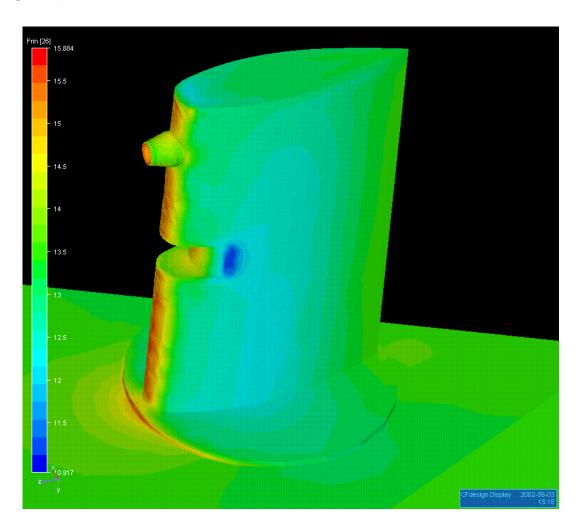
FRONT VIEW



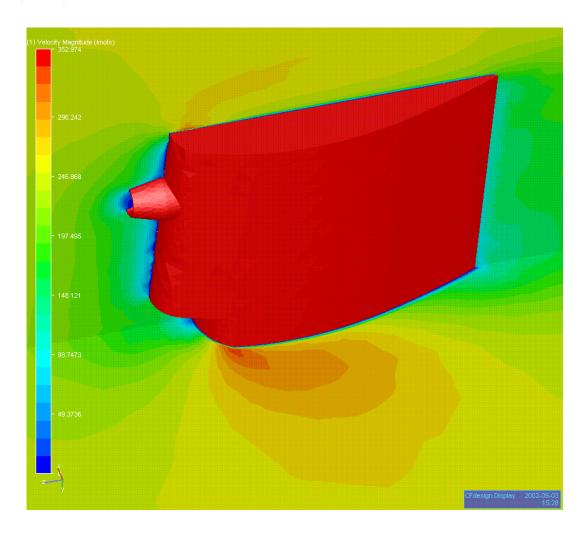
REAR VIEW


Aviation Weather Information

Computational Fluid Dynamics modeling conducted on probe to...


Aviation Weather Information

determine optimum location for static pressure port,

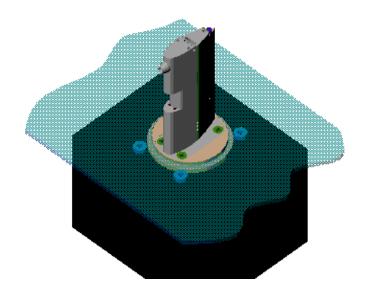

Aviation Weather Information

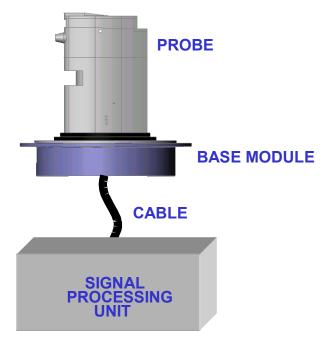
determine angle of attack and side slip effects, and

Aviation Weather Information

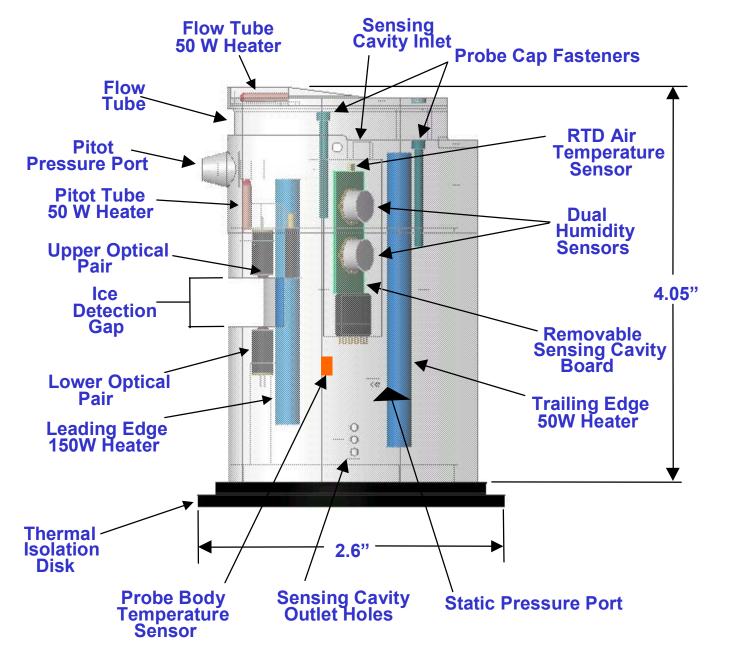
determine high speed effects (for application on regional jets).

TAMDAR Sensor Version C




- Under development
 - For Single-engine A/C, wing mount, use A/C heading and static pressure
 - ➤ For Multi-engine, nose mount, independent of A/C
- Dedicated flight tests planned on several aircraft 1/03 6/03
- ➤ This version to be certified for Operational Evaluation

TAMDAR


Aviation Weather Information

Version B: Electronics package mounted at probe base

Version C: Critical electronics mounted in base module plus a remotely located chassis.

Preliminary
TAMDAR
Version C

Risk Mitigation: Humidity

- ➤ TAMDAR Sensor (Version B) currently using Honeywell HIH-series capacitive sensor
- Hygrometrix MEMS-based strain gauge cellulose hygrometer (Lot 2 & 3) testing completed
- Evaluation of Hygrometrix (Lot 4) in progress (NASA)
- TAMDAR Version C to incorporate two interfaces for two hygrometers (internal)
- ➤ If Hygrometrix prove ineffective, then a new selfcleaning, Peltier stage, chilled mirror hygrometer will be developed for future use.

Flight Testing

- ➤ UND Cessna Citation II (8 months)
- ➤ NASA GRC Twin Otter (2 months)
- ➤ ODS Beechcraft Bonanza (11 months)
- ➤ LaRC C-206H and King Air
- > NOAA OMAO P3 "Hurricane Hunter"
- ➤ Navy Research Lab Twin Otter (THORPEX)
- French Met Service Merlin or Cessna
- ➤ Canadian Met Service (First-Air B727 et. al.)
- > FAA Safe Flight 21
- > FAA Capstone (10 GA aircraft)

NASA LaRC Flight Tests

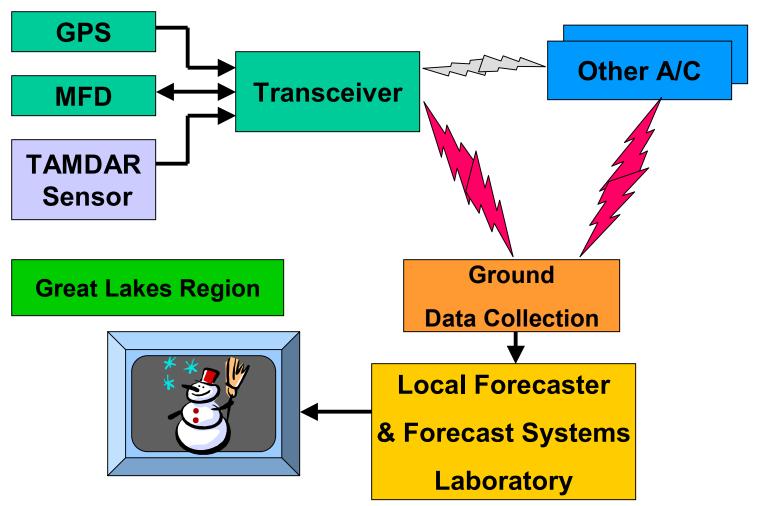
- Shakedown, calibration, and verification flights planned
- Flights-of-Opportunity for longer-term testing (at least one per week for 6-12 months)

Aircraft Meteorological Data Reporting

- ➤ TAMDAR presented to World Meteorological Organization AMDAR Panel during their last annual meeting
- ➤ Great interest in TAMDAR from other countries to conduct flight tests
- ➤ Meteorological Service of Canada and regional airline partner First Air to purchase 16 sensors from ODS
- ➤ Meteo France to purchase one sensor

TAMDAR Schedule

- ➤ 10/02 FMEA initiated on Version C
- ➤ 11/02 FAA Safe Flight 21 negotiation
- 11/02 TAMDAR FDR
- 12/02 FAA Capstone negotiation
- ➤ 01/03 Version C probe available
- ➤ 01/03 Initiate ground testing for certification
- 02/03 TAMDAR on NASA 206H
- ➤ 03/03 THORPEX (TAMDAR on NRL Twin Otter)
- \triangleright 03/03 TAMDAR on NOAA P3
- ▶ 04/03 TAMDAR on UND Citation
- > 09/03 TAMDAR Certification
- ➤ 10/03 FAA Capstone flights
- 10/03 Initiate Operational Evaluation


Operational Evaluation

- ➤ Version 3 to be certified for: Saab 340, Raytheon 1900, Bombardier Dash 8, Aerospatiale ATR72, or Dornier 328 depending on chosen regional airline.
- ➤ Negotiations to commence with airlines flying turboprop aircraft in Great Lakes region: Mesaba Airlines, Chatauqua Airlines, and Air Wisconsin
- Local Weather Forecaster Richard Mamrosh to use Great Lakes region TAMDAR data during Operational Evaluation

Operational Evaluation Concept

Summary

- > TAMDAR Sensor Development
- > Flight Testing
- Risk Mitigation
- Standardization Efforts
- Certification
- Great Lakes Operational Evaluation in 2004